Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supplementary Material for

Anion- π Interactions and Positive Electrostatic Potentials of *N*-Heterocycles Arise from the Positions of the Nuclei, not Changes in the π -electron Distribution

Steven E. Wheeler* and Jacob. W. G. Bloom

Department of Chemistry, Texas A&M University, College Station, TX 77842, USA E-mail: wheeler@chem.tamu.edu

Contents

Details on the computation of σ - and π -components of the ESP and Q_{zz} Computed data for model anion- π complexes Additional Figures showing ESPs in plane bisecting benzene and triazine Cartesian Coordinates

Computing the σ - and π -contributions to the electronic component of the ESP and Q_{zz}

The electrostatic potential of a collection of nuclei and the associated electron density is given by

$$V(\mathbf{r}) = V^{nuc}(\mathbf{r}) + V^{elec}(\mathbf{r}) = \sum_{A}^{nuclei} \frac{Z_{A}}{|\mathbf{r} - \mathbf{R}_{A}|} - \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$
(1)

where the integral runs over all space. We wish to partition $\rho(\mathbf{r})$ into contributions from the σ - and π -systems, such that

$$V(\mathbf{r}) = V_{\sigma}^{nuc}(\mathbf{r}) + V_{\sigma}^{elec}(\mathbf{r}) + V_{\pi}^{elec}(\mathbf{r}).$$
⁽²⁾

For planar arenes, this can be accomplished by partitioning the electron density based on the symmetry of the underlying molecular orbitals. For a C_s -symmetric arene in which the mirror-plane corresponds to the molecular plane, the contributions of the σ - and π -electrons to the electrostatic potential can be defined as

$$V_{a'}^{elec}\left(\mathbf{r}\right) = -\int \frac{\rho_{a'}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|} d\mathbf{r}' \equiv V_{\sigma}^{elec}\left(\mathbf{r}\right)$$
(3)

and

$$V_{a''}^{elec}\left(\mathbf{r}\right) = -\int \frac{\rho_{a''}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|} d\mathbf{r}' \equiv V_{\pi}^{elec}\left(\mathbf{r}\right),\tag{4}$$

where

$$\rho_{a'}(\mathbf{r}) = 2\sum_{i}^{a'} \left| \phi_{i}^{s}(\mathbf{r}) \right|^{2}$$
(5)

and

$$\rho_{a''}(\mathbf{r}) = 2\sum_{i}^{a''} \left| \phi_i^s(\mathbf{r}) \right|^2 \tag{6}$$

in which the sums run over all doubly-occupied molecular orbitals of a' or a" symmetry.

The $\sigma\text{-}$ and $\pi\text{-}\text{components}$ of Q_{zz} are defined similarly.

Table S1. CCSD(T) interaction energies [E_{CCSD(T)}, from Ref. 5d in the main text] for Cl⁻ interacting with benzene and five azines at the corresponding equilibrium distances (in Angstroms), along with computed Q_{zz} values (in Buckinghams) and ESP values at the position of the anion and the Pearson correlation coefficient between the CCSD(T) interaction energies and the Qzz and ESP values.^[a]

	R	E _{CCSD(T)}	Q_{zz}	ESP@R
benzene	3.88	0.9	-8.9	-6.6
pyridine	3.59	-1.3	-5.9	-4.9
pyrazine	3.39	-4.0	-2.9	-2.1
s-triazine	3.26	-7.0	0.3	1.8
s-tetrazine	3.17	-9.7	2.5	4.7
hexazine	3.04	-15.1	7.0	11.9
		Correlation:	-0.995	-0.997

[a] All energies in kcal mol⁻¹.

Figure S2. Difference in electrostatic potential (Δ ESP) between triazine and benzene in the plane bisecting the two rings, along with the nuclear contribution to Δ ESP (Δ ESP_N) and hte s-and p-contributions to the electronic component of Δ ESP_n, Δ ESP_e(σ) and Δ ESP_e(π).

MP2/aug-cc-pVTZ optimized Cartesian Coordinates

12			
Benze	ene		
С	-1.2074430	0.6971180	0.000000
С	0.000000	1.3942360	0.000000
С	-1.2074430	-0.6971180	0.000000
С	1.2074430	-0.6971180	0.000000
С	0.000000	-1.3942360	0.000000
С	1.2074430	0.6971180	0.000000
Н	-2.1446600	1.2382200	0.000000
Н	-0.000000	2.4764410	0.000000
Н	2.1446600	1.2382200	0.000000
Н	2.1446600	-1.2382200	0.000000
Н	0.000000	-2.4764410	0.000000
Н	-2.1446600	-1.2382200	0.000000
11			
Pyrio	dine		
Ν	-1.399004	0.00000	0.00000
С	-0.698037	1.142655	0.00000
С	-0.698037	-1.142655	0.00000
С	1.407180	0.00000	0.00000
С	0.693948	-1.194555	0.00000
С	0.693948	1.194555	0.00000
Н	-1.280633	2.056305	0.00000
Н	1.200592	2.149983	0.00000
Н	2.489086	0.00000	0.00000
Н	1.200592	-2.149983	0.00000
Н	-1.280633	-2.056305	0.00000

ΤU			
Pyra	zine		
Ν	-1.411837	0.00000	0.00000
С	-0.696633	1.132099	0.00000
С	-0.696633	-1.132099	0.00000
Ν	1.411837	0.000000	-0.000000
С	0.696633	-1.132099	-0.000000
С	0.696633	1.132099	-0.000000
Н	-1.250488	2.062752	0.00000
Н	1.250488	2.062752	-0.000000
Н	1.250488	-2.062752	-0.000000
Н	-1.250488	-2.062752	0.00000

9			
s-Tr	iazine		
Ν	1.1897460	0.6869000	0.000000
С	0.000000	1.2942960	0.000000
С	1.1208940	-0.6471480	0.000000
С	-1.1208940	-0.6471480	0.000000
Ν	0.000000	-1.3738000	0.000000
Ν	-1.1897460	0.6869000	0.000000
Н	0.000000	2.3768120	0.000000
Н	-2.0583800	-1.1884060	0.000000
Н	2.0583800	-1.1884060	0.000000

0			
s-Te	trazine		
С	-1.263225	0.00000	0.00000
С	1.263225	0.00000	-0.000000
Н	-2.344128	0.00000	0.00000
Н	2.344128	0.00000	-0.000000
Ν	-0.665524	1.198400	0.00000
Ν	0.665524	1.198400	-0.00000
Ν	-0.665524	-1.198400	0.00000
Ν	0.665524	-1.198400	-0.000000